VDM Metals

VDM® Alloy 690 Nicrofer 6030

VDM® Alloy 690

(Nicrofer 6030)

Material Data Sheet no. 4038

VDM® Alloy 690 is a nickel-chromium-iron alloy with approx. 30 % of chromium, which is particularly suitable for use in oxidising media. VDM® Alloy 690 is characterised by

- · very good resistance to fluoride containing hot nitric acid,
- good resistance to stress corrosion cracking caused by alkalis,
- excellent resistance to stress corrosion cracking caused by media containing chloride and polythionic acids,
- excellent resistance to many aggressive aqueous media or in the primary and secondary loops of nuclear reactors,
- good resistance to oxidation, sulphidation and metal dusting in hot gases and
- good mechanical properties at room temperature and high temperature, paired with high ductility.

Designations and standards

Standards	Material designation
EN	2.4642 - NiCr29Fe
ISO	NiCr29Fe9
UNS	N06690
AFNOR	NC30Fe

Table 1a - Designations and standards

Product form	DIN	ISO	ASME	ASTM
Rod, bar	17742, 17752	Com Statement Statement St	SB 166, SB 564	B 166, B 564
Sheet, plate	17742, 17750	6208 9722	SB 168	B 168
Strip	17742, 17750		SB 168	B 168
Wire	17753	eseri estatueri estatueri est		Andrew Statement Statement St

Table 1b – Designations and standards

Chemical composition

a Tire	pri Staffer Staffe	Ni	Cr	Fe	С	Mn	Si	Cu	S
a Tre	Min.	58	27	7 35	etinens Stations 3	American Statement State	State of States	Station Station	Station Stations
	Max.	Status Status	31	11	0.05	0.5	0.5	0.5	0.015

Table 2 - Chemical composition (%).

Physical properties

, and	Density	8.2 g/cm ³
P	Melting range	1,390 to 1,410 °C
	Relative magnetic permeability at 20 °C (68 °F)	1.01 (max.)

Min.	58	27	7	Aller Statement Statement	Station Station Stati	ar Shelinar Shelina		Station Stations	Statement Statement Statement Statement Statement	
Max.	State State	31	11	0.05	0.5	0.5	0.5	0.015		
Table 2 – Chemical composition (%). Physical properties										
Density		Teller atel	are Statement St	8.2 g/cm ³	Steel Steel Steel	and Statement States	er Stein Stein			
Melting	range	a at a fair	as the district of the second	1,390 to 1,4	10 °C	Station Station	34	garan garan		
	e magnetion		°F)	1.01 (max.)						
Temp	See The See The See The See	a statuta stati	Specific	heat	Thermal		Electric	al	Modulus of	Coefficient of
Tragery Statement State,					conductiv	vity	resistar	nce	elasticity	thermal expansion
°C	of the state of th				Statement Statement State				GPa	
20	6	8	negari			Se par	116		212	Section Sections Sections Statement Sections
100	2	12	496		13.9	are stated to	117	Stranger States	206	13.7
200	3	92	521		15.8	C	120	Status Status (201	14.2
300	5	72	538		17.6		122	Stafferen Stafferen	195	14.6
400	3.7	52	555	5	19.5	States States	124	States of States of	189	14.9
500	9	32	573		21.5	after States	125	States States .	182	15.4
600	arini Striftenii Striftenii	1,112	620		24.4		125		175	16
700	State of State of	1,292	654		26.7	and Statement Statement	125	Statement Statement	167	16.5
800		1,472	663	And the state of t	27.1		125	States States	155	16.9
900	and States of States of	1,652	677		28.4		126		152	17.3
1,000	State of State of	1,832	684	Harris Stationary Stationary	29.6	Status Status	127	Stafferman Stafferman	143	17.7
1,100		2,012	695	The Strain Strain	30.9		States States	States States		18.2
1,200	Larrie State of State	2,192	705		32.3		State State			18.6
	, a					, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,			

Page 3

Table 3 - Typical physical properties

Metallurgical structure

VDM® Alloy 690 has a cubic face-centred structure.

Mechanical properties

The following mechanical properties apply to VDM[®] Alloy 690 in the solution-annealed condition and in the stated semi-fabricated forms and dimensions.

					the training the training the
ST.	Temp.	attern statement statement	Yield strength	Tensile strength	Elongation
S.			R _{p 0,2}	R _m MPa	A
577	°C	°F	MPa		%
The	20	68	240	590	30
Zir	100	212	236	580	45
21s	200	392	228	550	45
STV	300	572	220	520	45
The	400	752	216	500	45
Str.	500	932	210	490	45
Str.	600	1,112	200	470	45
St.	700	1,292	156		
Zie.	800	1,472	120		

Table 4 – Short-term properties of solution-annealed VDM® Alloy 690 at elevated temperatures (yield strength in acc. w. DIN 10302, typical values for tensile strength and elongation)

Product	Yield strength	Tensile strength	Elongation
	R _{p 0,2} MPa	R _m MPa	A %
Sheet, strip	> 240	> 586	> 30
Bar, billet	> 240	> 586	> 30

Table 5a - Minimum values at room temperatures in acc. w. ASTM B166 or 168

	Product and condition	Diemensions	Yield strength R _{p 0,2} MPa	Tensile strength R _m MPa	Elongation A %	
	Sheet, strip Hard	> 6.4	> 620	> 860	> 2	
par T	Rounds Cold worked	< 12.7	> 620	> 825	>7	
(rel		12.7-25.4	> 585	> 760	> 10	
		25.4-63.5	> 550	> 725	> 12	
(ed) (ed)	Squares, hexagons	< 6.4	> 550	> 690	>5	
feel o	and rectangles Cold worked	6.4-12.7	> 480	> 655	>7	

Table 5b – Minimum values at room temperatures in acc. w. ASTM B166 or 168 for various product forms, size ranges and processing status

Temperature			Creep values							
	°C	Partie Sand	Rp 1.0/10⁴ h MPa	Rp 1.0/10 ⁵ h MPa	Rm /10⁴ h MPa	Rm /10⁵ h MPa				
	700	1,292	42	30	56	39				
	750	1,382	30	19.3	41	30				
	800	1,472	20	12	30	21				
	850	1,562	12.8	7.6	21.5	14.4				
	900	1,652	8.2	4.8	15.4	10				
	950	1,742	5.3	3	10.9	7 String String String				
	1,000	1,832	3.4	1.9	7.7	4.8				
	1,050	1,922	2.2	1.2	5.4	3.4				

Table 6 – Typical creep properties of solution-annealed VDM® Alloy 690

Corrosion resistance

VDM® Alloy 690 is resistant to a wide range of corrosive media and atmospheres. The high chromium content makes the material particularly suitable for strongly oxidising conditions. The high chromium content also confers resistance to high-temperature corrosion in gases having an oxidising and sulphidising effect. Due to its high nickel content, VDM® Alloy 690 is exceptionally resistant to stress corrosion cracking which can occur in the primary water loops of nuclear power stations. The material also shows good resistance in mixtures of nitric and hydrofluoric acid. It demonstrates remarkable behaviour in concentrated (98.5 %) sulphuric acid at temperatures of up to 150 °C (300 °F).

Applications

Thanks to its excellent resistance to wet and high-temperature corrosion, and its good mechanical properties, VDM® Alloy 690 is suitable for a wide range of applications. Typical applications are:

- treatment of radioactive waste,
- components in boilers and steam generators in pressurised water reactors,
- production of alkali metal sulphates using Mannheim furnaces,
- fittings in combustion units for crude oil (oil ash corrosion) and
- glass and silicate production.

Processing and heat treatment

VDM[®] Alloy 690 can be processed using standard industrial production techniques.

Heating

Workpieces must be clean and free of any contaminants before and during heat treatment. Sulphur, phosphor, lead and other low-melting-point metals can lead to damage when heat treating VDM[®] Alloy 690. This type of contamination is also contained in marking and temperature display paints or crayons, and also in lubricating grease, oils, fuels and similar materials.

Fuels should contain as little sulphur as possible. Natural gas should contain less than 0.1 % by weight of sulphur. Heating oil with a sulphur content of maximum 0.5 % by weight is also suitable.

Electric furnaces are to be preferred due to precise temperature control and freedom from contamination due to fuel. The furnace atmosphere should be set between neutral and slightly oxidising, and should not change between oxidising and reducing. Direct flame impingement needs to be avoided.

Hot working

VDM® Alloy 690 can be hot worked at a temperature range of between 1,230 and 900 °C (2,250 and 1,650 °F) with subsequent rapid cooling down in water or by using air nozzles. The workpieces should be placed in the furnace heated to hot working temperature in order to heat up. Once the temperature has equalised, a retention time of 60 minutes for each 100 mm of workpiece thickness is recommended. After this, the workpieces should be removed immediately and formed during the stated temperature window. If the material temperature falls below the minimum hot working temperature, the workpiece must be reheated. Heat treatment after hot working is recommended in order to achieve opti-

mum properties and corrosion resistance.

Cold working

Cold working should be carried out on annealed material. VDM® Alloy 690 has a higher work hardening rate than austenitic stainless steels. This must be taken into account during design and selection of forming tools and equipment and during the planning of forming processes. Intermediate annealing may be necessary for high degrees of cold working deformation. Before use, heat treatment is required

after cold working with more than 10 % deformation.

Heat treatment

Solution annealing should be carried out at temperatures between 1,020 and 1,070 °C (1,870 to 1,960 °F). If use in a high-temperature range with increased creep resistance is intended, the solution annealing temperature should be raised to between 1,080 and 1,150 °C (1,980 to 2,100 °F).

Water quenching should be carried out on workpiece thicknesses over 1.5 mm so that the optimum corrosion resistance of the material can be reached. Workpieces of less than 1.5 mm thickness can be

cooled using air nozzles.

If use in pressurised water reactors is intended, a subsequent heat treatment of around 10 hours at between 700 and 740 °C is necessary in order to ensure that carbides are segregated specifically at

grain boundaries.

The cleanliness requirements must be observed for any form of heat treatment.

Descaling and pickling

Oxides of VDM[®] Alloy 690 and discolorations in the area around welding seams are more adherent than on stainless steels. Grinding using extremely fine abrasive belts or grinding discs is recommend-

ed. It is imperative that grinding burn is avoided.

Before pickling – which may be performed in a hydrofluoric acid mixture – the surface oxide layer must be broken up by abrasive blasting, by carefully performed grinding or by pre-treatment in a fused salt bath. The pickling baths used should be carefully monitored with regard to concentration and temperature, since pickling for too long can damage the material surface due to intercrystalline corrosion.

Machining

VDM® Alloy 690 should preferably be machined in the annealed condition. Since the material exhibits a considerable work hardening rate, low cutting speeds should be used and the tool should remain continuously in contact. An adequate cutting depth is important in order to cut below the previously formed work-hardened zone.

Optimum heat dissipation through the use of large quantities of suitable, preferably aqueous, lubricants has considerable influence on a stable machining process.

Welding

When welding nickel alloys and special stainless steels, the following information should be taken into account:

Workplace

A separately-located workplace, which is specifically separated from areas in which carbon steels are being processed, should be used. Maximum cleanliness is required, and draughts should be avoided during inert gas welding.

Auxiliary equipment and clothing

Clean fine leather gloves and clean working clothes should be used.

Tools and machines

Tools which have been used for other materials may not be used for nickel alloys and stainless steels. Only stainless steel brushes may be used. Processing and treatment equipment such as shears, punches or rollers must be fitted with means (felt, cardboard, films) in order to avoid material contamination with ferrous particles, which can be pressed into the surface of the material and thus lead to corrosion.

Welding edge preparation

Welding edge preparation should preferably be carried out using mechanical methods such as lathing, milling or planing. Abrasive waterjet cutting or plasma cutting is also suitable. In the latter case, however, the cut edge (seam flank) must be cleanly re-worked. Careful grinding without overheating is also permissible.

Ignition

The arc may only be struck in the weld area, e.g. along the seam flanks or a shoe, and should not be carried out on the workpiece surface. Arc striking areas are prone to corrosion.

Included angle

The different physical characteristics of nickel alloys and special stainless steels are generally expressed through lower thermal conductivity and higher thermal expansion in comparison with carbon steel. This behaviour must be taken into account using larger root gaps or web spacings (1 to 3 mm), whereas due to the viscous weld metal in comparison with standard austenites and the shrinkage tendency, angles of aperture of between 60 and 70 degrees are to be provided for but welds as shown in Figure 1.

VDM Metals GmbH · Plettenberger Straße 2 · D-58791 Werdohl · www.yttzhj.com

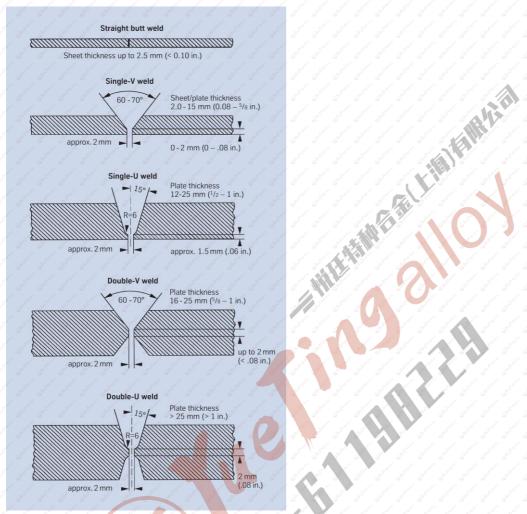


Figure 1 – Edge preparation for welding nickel alloys and special stainless steels

Cleaning

Cleaning of the basic material in the seam area (both sides) and the filler material (e.g. welding rod) should be carried out using ACETONE.

Welding process

VDM® Alloy 690 should be in solution-annealed condition for welding, and should be free of scale, grease and markings. VDM® Alloy 690 can be welded using TIG and plasma welding processes. When welding roots, sufficient protection of the root needs to be ensured with pure argon (Ar 4.6) so that the welding seam is free of oxides after welding. Root backing is also recommended for the first and, in certain cases depending on the welded construction, also for the second intermediate root pass. Any discolouration/heat tint should be removed, preferably using a stainless steel brush, while the welding seam is still hot from the welding heat.

Filler metal

The following filler materials are recommended:

When welding VDM® Alloy 690, VDM® FM 52 can be used as filler material. VDM® FM 52 is available in varying product forms on request. An improved variation on VDM® FM 52 is provided by VDM FM 52i®, since this stands out due to its particularly high hot crack resistance during welding. VDM FM 52i® is available in the following product forms:

TIG rod, welding wire, wire electrode, and welding strip*)

VDM FM 52i[®]
ASME CODE Case 2142-4 UNS N06056
AWS A5.14: ERNiCrFe-15 (electrode rod)

Coated rod electrodes

VDM FM 52i®

UNS W86056 (proposed) AWS A5.11: ENiCrFe-15

Welding parameters and influences

It must be ensured that work is carried out using targeted heat application and low heat input as shown in Table 7 as an example. The stringer bead technique is recommended. The interpass temperature should not exceed 120 °C (248 °F). In principle, checking of welding parameters is necessary.

Heat input Q can be calculated as follows:

U = arc voltage, volts

I = welding current, amperes

v = welding speed, cm/min.

^{*)} recommendations for welding powder on request

Post-weld treatment

Brushing with a stainless steel wire brush immediately after welding, i.e., while the metal is still hot, generally results in removal of heat tint and produces the desired surface condition without additional pickling. Pickling, if required or specified, should generally be the last operation in the welding process. Information under "Descaling and pickling" should be referred to. Heat treatments are not required either before or after welding.

Stabilising annealing should be carried out on semi-finished products which were in use at temperatures of between 600 and 650 °C (1,112 and 1,202 °F) before they are reused in this critical temperature range after repair welding.

Page 12

Thick- ness (mm)	Welding process	Filler material		Root p			Welding speed (cm/min.)	Shielding gas		
Jeth get ge Jether general ge Jether general ge		Diameter (mm)	Speed (m/min.)	lin (A)	U in (V)	I in (A)	U in (V)		Type	Rate (I/min.)
3 3 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	m-TIG	2 de la companya de l	deren deren deren deren deren deren	90	10	110- 120	11	15	I1, R1 at max. 3% H2	8-10
6 3 4 4 3	m-TIG	2-2.4	Statement Statement Statement	100- 110	10	120- 140	12	10-16	I1, R1 at max. 3% H2	8-10
8 3,000 3,000	m-TIG	2.4	Standard Standard Standard	100- 110	11	130- 140	12	10-16	I1, R1 at max. 3% H2	8-10
10	m-TIG	2.4	Statement Statement Statement	100- 110	11	130- 140	12	10-16	I1, R1 at max. 3% H2	8-10
3	v-TIG	1.2	1.2	90	10	150	11	25	I1, R1 at max. 3% H2	15-20
5	v-TIG	1.2	1.4	100- 110	11	180	12	25	I1, R1 at max. 3% H2	15-20
2 3 7 7 3	v-TIG HD	1		90	10	180		80	I1, R1 at max. 3% H2	15-20
10	v-TIG HD	1.2		100- 110	11	220	12	40	I1, R1 at max. 3% H2	15-20
	Plasma ²⁾	1.2	1	180	25	Sales Statement	Allegari Stateman	30	I1, R1 at max. 3% H2	
3 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Plasma ²⁾	1.2	ST STATE STATE	200-	25	Service Statement	esteriorio Statemento	26	I1, R1 at max. 3% H2	30

¹⁾ Root pass: It must be ensured that there is sufficient root protection, for example using Ar 4.6, for all inert gas welding processes.

Section energy kJ/cm: TIG, MIG/MAG manual, mechanised max. 8; e-manual max. 7; plasma max. 10 Figures are for guidance only and are intended to facilitate setting of the welding machines.

Table 7 – Welding parameters

²⁾ Plasma: recommended plasma gas Ar 4.6 / plasma quantity 3.0-3.5 l/min

Availability

VDM® Alloy 690 is available in the following standard semi-finished product forms:

Rod and bar

Delivery conditions: forged, rolled, drawn, thermally treated, oxidised, descaled or pickled, machined, peeled or ground

Diemensions*	Outside diameter mm	Length mm
Generaldimensions	6-800*	1.500-12-000
Material specific dimensions	22-300	1.500-12.000
* Further dimensions on request	States of States	Will service the service of the serv

Sheet and plate

Delivery conditions: hot or cold rolled, thermally treated, descaled or pickled

Condition	Thickness	Width	Length	Piece weight
	mm	mm	mm	kg
Cold rolled	1-7	1.000-2.500	< 5.500	<3.350
Hot rolled	3-100	1.000-2.500	< 12.000	< 3.350

Wire

Delivery conditions: bright drawn, 1/4 hard to hard, bright annealed in rings, containers, on spools and spiders

Drawn (mm)	0.16-10
Hot-rolled (mm)	5.5-19

Strip

Delivery conditions: cold rolled, thermally treated and pickled or bright annealed

	Thickness mm	Width mm	Coil internal diameter mm				
Į,	0.025-0.15	4-230	300	400	500	er Statement Statement	
S ^r	0.15-0.25	4-720	300	400	500	ate of the state o	
Elegania Elegania	0.25-0.6	6-750	atino di Ataliani	400	500	600	
S ^{ree}	0.6-1	8-750	atronomia Stationeria	400	500	600	
gr ^a	1-2	15-750	after Statement St	400	500	600	
S ^{ree}	2-3	25-750	atranii Statnanii S	400	500	600	

Other shapes and dimensions such as circular blanks, rings, seamless or longitudinal-welded tubing and forgings can be requested.

Disclaimer

All information contained in this data sheet are based on the results of research and development work carried out by VDM Metals GmbH, and the data contained in the specifications and standards listed available at the time of printing. The information does not represent a guarantee of specific properties. VDM Metals reserves the right to change information without notice. All information contained in this data sheet is compiled to the best of our knowledge and is provided without liability. Deliveries and services are subject exclusively to the relevant contractual conditions and the General Terms and Conditions issued by VDM Metals GmbH. Use of the most up-to-date version of this data sheet is the responsibility of the customer.